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FOREWORD

The investigation reported herein is part of the research project at

The Ohio State University, Columbus, Ohio supported by the Air Force Of-

fice of Scientific Research Grant 83-0055. Lt. Col. John J. Allen was

the Program Manager at the commencement of the project. Lt. Col. Law-

rence D. Hokanson was the Program Manager from July 1, 1983 onwards.

The research project was started Feburary 1, 1983 and is continuing.

The present report documents part of the work done up to January 31,

1984. At The Ohio State University, the project is supervised by Dr.

Ranbir S. Sandhu, Professor, Department of Civil Engineering. The com-

puter program modification were carried out by Or. Baher L. Aboustit,

Post-doctoral Reseach Associate. The analyses reported herein were

started by Dr. Aboustit and completed by Mr. Soon-jo Hong, graduate stu-

dent, who also prepared the documentation on the Ohio State University

Computer System. The Instruction and Research Computer Center at The

Ohio State University provided the computational facilities.
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ABSTRACT

The transient response of saturated porous soils to time dependent

boundary conditions is analyzed. Galerkin finite element method is used

to set up the spatial discretization of Biot's equations of wave propa-

gation through linearly elastic fluid-saturated porous medium. Wilson's - -

0-Y-9 algorithm is used to integrate the equations of motion. The proce-

dure is applied to several one-dimensional steady state and transient

problems. Excellent agreement with the analytic solution was obtained

with 'proper' selection of time-integration parameters. There is appar-

ent need for developing reliable time-integration procedures.
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SECTION I

INTRODUCTION

Biot (2,3) developed the field equations for propagations of waves

through fluid-saturated elastic porous media. Lagrange equation of mo-

tion was set up assuming the existence of a dissipation function in

terms of the relative velocity of the two constituents. By assuming the

existence of a strain energy density function for the mixture, the equa-

tions of motion were written in terms of the displacements of the solid

and the fluid. Hsieh and Yew (13) combined the theory of mixtures and

Biot's assumption that the fluid acts over the pore space, to provide

0 similar equations to Biot's equation (3) but with variable porosity.

Garg (10) extended the theory to elastic-plastic soils. Ishihara (15)

examined Biot's work in terms of physical constants which are related to

Ethe compressibilities of individual constituent materials. Prevost (17)

assumed Newtonian fluid behavior and the soil to be elasto-plastic.

Most analytical solutions for the initial boundary value problem of

wave propagation through saturated porous media provide only the harmon-

ic component of the solution. Deresiewicz (6,7) obtained solution for

the reflection of plane waves (2) and Love waves at a free plane. Zienk-

iewicz et al.(24) obtained the solution for a half space subjected to

harmonic tractions. Garg et al.(11) presented the exact transient as

well as the steady state solutions for compressional wave propagation

through a porous elastic solid and developed finite difference proce-

o 1
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dures for numerical solution. Chakroborty and Dey (4) obtained the so-

lution for Love waves in saturated media underlain by heterogeneous --

elastic medii.

Although the finite element method has been extensively used for

analysis of quasi-static consolidation problems, e.g. Sandhu (21), its

application to the dynamic response of saturated soils is still in its

infancy. Ghaboussi and Wilson (12) used Sandhu and Pister's (19) ap-

proach to construct a variational principle, of the Gurtin type, equiva-

lent to Biot's (3) field equations including initial as well as boundary

conditions. This variational principle was the basis for a finite ele-

ment discretization, in which the Gurtin type approach was replaced by

the 0- Y - 0 method for the time-domain integration. In the spatial

discretization, a one-dimensional element was used with nodal values of

the solid displacement and the relative displacement of the fluid as

generalized coordinates. The problem of a soil layer subjected to unit

step loading was analyzed. The problem was solved by two methods based

on lumped mass and on consistent mass, respectively. Waves appeared to

propagate faster when consistent mass formulation was used. This was

ascribed to inertial coupling in this formulation. Ghaboussi and Wilson

(12) did not present any comparison with exact solution. Garg (11) con-

sidered this unsatisfactory as the results from the two approaches dif-

fered consie',dbly. Prevost (17) used the Galerkin approach for spatial

discretization and Hughes' (14) implicit-explicit algorithm for time do-

main integration. Bilinear four noded isoparametric elements were used

with nodal point values of displacement of the solid and the fluid as

the unknown parameters. Assumption of Newtonian fluid behavior lead to

• . . .. - .- .. -i • ( -.L T 'T- .. ... " ". . . . . .
_ : *. . . .* . * .: • • . * . .. . * *. . , . , - , -
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nonsymmetric damping matrices. Two-dimensional analysis was actually

used to solve a one-dimensional problem with finite length. For rela-

tively large permeability, Prevost compared his results with the exact

solution for a solid with no pores. This was incorrect because non-po-

rous solid represents a strong coupling, while a material with high -

permeability is weakly coupled (11).

The purpose of this investigation was to develop an effective finite

element computer program based on the Biot's theory and evaluate it

against available analytical solutions. A Galerkin approach was used to

set up the semi-discrete matrices spatially and the0-y- 8 algorithm is

used for the time domain integration. Nodal values of the solid dis-

placement and relative displacement of the fluid with respect to the

solid skeleton are used as the unknown quantities. A computer program

was written to handle one-dimensional as well as plane-strain problems.

One-dimensional linear element and four node and eight node isoparame-

tric two-dimensional elements were used. The development is essentially

similar to Ghaboussi and Wilson's (12). The program was applied to nu-

merical solution of several one-dimensional problems for quasi-static as

well as dynamic problems for which exact solutions are available. The

results showed excellent agreement between the approximate and the exact

solution.

SECTION II summarizes the governing field equations following Biot

(3). The finite element development is given in section III. SECTION IV

describes the example problems. Results of the numerical solution proce-

*I dures are evaluated in SECTION V.



SECTION II

FIELD EQUATIONS GOVERNING DYNAMICS OF FLUID-SATURATED
ELASTIC SOILS

Biot's (3) equations of motion for an elastic porous medium saturated

with a compressible fluid may be written in standard indicial notation

as;

[Eijkluk,l +aM(auk,k + wk,k)B ij],j + Pfi Pui + - P2wi (1)
f

(M(auk,k + wk,k)] i + P2f = l P2i + PA- i (2)
f f K

where ui, wi, fi, Eijkl denote the cartesian components, respectively,

of the solid displacement vector, the relative fluid displacement vector,

the body force vector per unit mass and the isothermal elasticity

tensor. P is mass density of the saturated soil and P2 that of water per

unit bulk volume. f, K, a, M are, respectively, the porosity, the perme-

ability, the solid compressibility and the fluid compressibility. The

superposed dot implies a time derivative. All the functions are defined - -

over the cartesian product R x [Oco) where R is the spatial region of

interest and [Oi( ,) is the positive interval of time. With these field

equations, we associate the following boundary conditions.

ui(t) ui(t) on Sli (3)

PREVIOUS PAGE 2
IS BLANK
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A

t.= 1 n3 =(Ejiik + a7r8..)n. t on S(4)

7r(t) = M(a Uk,k + Wkk) =7T(t) on S3  (5)

wi(t) = vi(t) on S4 (6)

where S S are complementary subsets of the boundary S of the
ii, 2i

spatial region of interest and so are S39 S4 . The initial conditions for

the problem are given by:

u(x, 0) u(X)

0
w(x, 0) = o(X)

-(x, 0) 
W (x )
0

* ... .. . . .

0).....

-0. . . . . . .



SECTION III

FINITE ELEMENT FORMULATION
.

3.1 SPATIAL DISCRETIZATION

Spatial discretization, APPENDIX A, of the governing equations for-the two-field formulation leads to the following matrix equations;
[Kss Ki u 0 0 : Mss Msf Rf -• + + (7)

K sfT Kff w 0 Cff Msf ff Rf

The development of these vectors and matrices is given in Appendix A.

These equations assume no inherent damping in the system as a whole.

The only damping component is associated with relative motion.

Ghaboussi and Wilson (12) introduced damping as a linear combination

of the stiffness and the mass matrix in the following form;

C al(Mss . f2 Mff) + a2(Kss - c? Kff) (8)

where a1 , a2 are constants and f, a have been defined in SECTION II.
L

The structural damping matrix is a linear combination of the mass and

the effective stiffness of the soil. Comparing with Equation (1), (K

o2Kff)u corresponds to (Eijkluk,l),j. The quantity Mss corresponds to

Pin Equation (1) and Mff to 2/f
2  in Equation (2). Hence, Mss- f2Mff

corresponds to P1 .

7* -. .. . . . . .*,

... . **. '* *,- -_-4-

* . * . ** * * . . - % ~ - . 4 . . . .
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3.2 TIME DOMAIN INTEGRATION

The discretized equations of motion, Equation (7) can be rewritten as

MU + CO + KU = R (9)

in which

r M M r Cu Mss Msf Css .

U= M= C=

w Msf Mff0 Cff

• IK
ss Ksf s

K= R = (10)
s T J...

_f Kff Rf)

Wilson's j3-y- 9 algorithm was used to integrate the equations of mot-

ion. In summary, the algorithm works as follows.

The displacements and velocities at time tn+ At can be expressed in

terms of U, U, U at time t as

n

2 2 2 2*
U U+ 19'to (112-0) (11)U) 0 Atn+0 n n n 02 (At) Un +B (At) Un+i

Un+e n + (1-Y) Oat6 n +yOAti,,i n + I

In which 13 ,il Y ,'I, Nowlirk ". wtt , i' i ,nt, (If).

S.- .:



n+e n+e

in which

. 1 y -'

K =K+ 2M C

S 2 OO(At) 2  .8BAt

R Ra + Cb
,-T Rn+ # 2 (At)2  + At

(14) "i

a n+# U n + eAtUn + (12-3) 92( At) 2 n

Sn+9= Un + (1- 0Y )e At~ n + (1/2- fIY ) 2( At) 2 Un'

Assuming cubic expansion of nodal point displacement over a time

interval in terms of displacement, velocity and acceleration at time tn'

the displacement, velocity and acceleration at time t +At can be ex-
n

. pressed as

1 1 )2
U U ++1+12l L AUn+: 73 n+e  (1 - 13)Un + (1 - *-)At On + n12(1 - )(At U

'.y Y YU n+1 :B3A) (U n+S " Un) + (1 77-)u n + (1 - t) ni (15)
-i 20.

i4
Un+1: (U n+- Un) 21 n  (1 +

f7eAt n

ib



*1
Various values for b and 0 can lead to various integrdtiOn schemes (12).

For 9 =1, the stability of the~3 method has been examined. Zienk-

iewicz (23) gives the following criteria for the undamped response of a

linear system.

Y > 1/2z-

>3 1/4(1/2 +Y) 2  (16)

1/2 + + y 0

07

Z-J.



SECTION IV

EXAMPLE PROBLEMS

4.1 INTRODUCTION

Several examples with known analytical solution were solved to check

the validity of the method and the correctness of code. These examples

included

a. Quasi-static soil consolidation

b. Dynamic response of an elastic layer of single material

c. Response of a fluid-saturated soil layer

All the problems deal with compressional wave propagation in an initial-

ly undisturbed, homogeneous, isotropic, elastic, porous or non-porous

system to dynamic loading. The system for c above was subjected to spa-

tially uniform surface traction q(t) as shown in Figure 1. Solution for

non-porous media was accomplished by prescribing relative displacement

between soil and fluid to be zero.

4.2 QUASI-STATIC PROBLEM OF SOIL CONSOLIDATION

The quasi-static consolidation problem was solved by setting density

and damping equal to zero. The example problem selected for cmparison

was the one solved earlier by Sandhu (20). Excellent agreement was ob-

served between the present solution and the one obtained (20) using a

'2" 11



* ' 1* ~ .. . I*E I - I~E 1 )II * IUhILUyit~.,~.,..

K -

12

U

0

S.-
U,

ci
ci 0
.4~)

C U,
o

0
V
0 0
o S..

0)
0. U

- L'a

* I-
ci)
U

.,- 0
S..

0

V
ci)

U
cii

L
cii

0 -
4.)

0~
o

* -9
cii

-J rJ

_________________________ U-

I

I

6



13

quasi- static consolidation analysis computer program based on the 8-4

element.

4.3 DYNAMIC RESPONSE OF AN ELASTIC BAR OF SINGLE MATERIAL

An elastic layer under spatially uniform excitation applied to its

surface can be regarded as an elastic bar, constrained in its lateral

dimensions and subjected to excitation at the free end. A representative

segment of the layer, equivalent to a laterally restrained bar, is shown

in Figure 2. The characteristics used in the finite element model were;

Total length L = 500 mm

Number of nodes = 51

Number of elements = 50

Length of each element = 10 mm

Modulus of elasticity E = 20000 kg/mm2

Poisson's ratio V= 0
Density P : 0.0008 kg.m.sec2/mm

Wave velocity Co = [(29+A )/p ]1/2 = 5000 mm/msec

Time interval At = 0.002 msec

Number of time steps = 50

where it, X are Lame's constants. The following two different conditions

at the free end were considered.

a. STEADY STATE RESPONSE

A sinusoidal loading in the form

Iii
q(t) = q0 sin(407rt) (19)

4 A O~t - . .--
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q( t)

L

No Lateral
Di spl1acements

y

17777

* Figure 2: Segment of an Layer Subjected to Dynamic Loading
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was applied to one end of the bar with the other end fixed.

I b. RESPONSE TO STEP LOAD

A load was suddenly applied and allowed to stay, i.e.

q(t) = q H(t) =PC H(t) (20)

where H(t) is the Heaviside function. It should be noted that the load-

ing in Equation (20) will induce a unit particle velocity (1). Several

values for 0, Y, 9 were used to obtain the optimum solution. The ana-

lytical solution for this problem which contains both the harmonic and

the transient solution is given in reference (9).

4.4 RESPONSE OF A FLUID-SATURATED SOIL LAYER (Garg's Problem)

The third example considered was that of a fluid-saturated porous

soil layer. The finite element model had the same characteristics as

used by Garg (11), i.e.,

Total length L 50 cm

Number of nodes = 51

Number of elements - 50

Length of each element = 1 cm

Modulus of elasticity E = .2319x10 dyn/cm2

Poisson's ratio 1 = 0.171
3i

Mixture mass density P = 2.3612 gm/cm3

Fluid mass density P = 0.18 gm/cm2,01g/m

Porosity f = 0.18

Fluid compressibility M = 0.102x1012 dyn/cm 2

DL;.......- ? ":-..................--.. ...................-.......... • .....-
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Lower bound of wave
velocity CO = 354875 cm/sec

Upper bound of first kind
wave velocity C+ = 358193 cm/sec

Upper bound of second kind
wave velocity C= 127941 cm/sec

The velocities C0, C+, C_ were defined by Biot (2) and Garg (11). Using

the notation of this report, these quantities are given by the following

expressions (11).

C2 = (A + 21 + a 2 MVP
0

C2 = ( A+ 21L + M(o-f))/ P

2C Mf2 / P2

2  p1C2 = Mf(o-f)/

2f P2

2C2 = 242 22 2 21
+ 1- 2 - 1 2) 2  2 1

Here, PI = P- P2 is the bulk mass density of the soil. These velocities

are applicable to one-dimensional compressive wave propagation. A unit

particle velocity for each phase was imposed at the free surface, i.e.,

.. 6(L,t) = H(t) (21) , _

4

S(L,t) = 0 (22)

4
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Equation (22) implies strong coupling at the free surface. In reality,

this may not be true. However, for the purpose of comparison with Garg,

Uthe same assumptions were made. As reported by Garg et el. (11), as

permeability K --, 0, the relative motion between the two constituents

vanishes and phase velocity C -. C 0 This is termed "strong coupling".

In this case the material behaves as a single continuum whose properties

are combination of those of the two constituents. On the other hand, as

K --a, the coupling between the two constituents vanishes and C -0 C+

This extreme is termed "weak coupling". The boundary condition given

by Equation (21) can be replaced by the traction boundary condition,

while the boundary conditions expressed by Equation (22) can be replaced

by the displacement boundary condition, i.e.

q(L,t) = PCH(t) (23)

w(L,t) = 0 (24)

where q(L,t) is the traction applied to the free surface. The numerical -.

values for the permeability and the time steps corresponding to strong

and weak couplings were;

a. Strong Coupling (Low Permeability)

K = O.148x10 "8 cm3/gm sec

At = 1 micro sec

Number of time steps = 50

b. Weak Coupling (High Permeability)

K = O.148x10 "2 cm3/gm sec

At= 2.4 micro sec
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Number of tree steps 50

4.5 RESPONSE OF A FLUID-SATURATED SOIL LAYER (Ghaboussi's Problem)

The fourth example was the problem solved by Ghaboussi and Wilson

(12). They did not compare the numerical solution with any analytical

solution. The problem considered was a fluid-saturated half space sub-

jected to a unit step-loading. The finite element model had the follow-

ing properties.

Total length L 50 cm

Number of nodes 51

Number of elements 50

Length of each element I cm

Modulus of elasticity E = 0.2319x1012 dyn/cm2

Poisson's ratio v= 0.171

Mixture density P= 3 gm/cm3

Fluid density P2 = 0.18 gm/cm
3

Porosity f = 0.18

Fluid compressibility M = 90x1011 dyn/cm 2

Solid compressibilty a : 1

Wave velocity for the C = [(2+ X+ 2MVP /2
mixture (no relative o
motion) = 1.755895xi06 cm/sec

Coefficient of permeability K = O.19x10 -6 cm/sec

Time interval At= 1 micro sec

Generally, the solid density of soil falls between the range of 2.0- 2.1

(gm/cm 3) and the compressibility of pure water is 2.0xlO I0 (dyn/cin 2).

Thus, it should be noted that mixture density drid tht, f l id ;rmpri-'.,i 1-

'" " ".. . "."- ...*.---. * . .-. -. . - • ,', , - ". -,T
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lity given above are far from real soil properties, but were taken to

match the problem solved by Ghaboussi and Wilson (12). Reference (12)did

.- not give any values for k and f. Assigned value of k is for the mixture

of very fine sand and silt and f is for very dense state.

I

i ......



SSECTION V

RESULTS OF THE ANALYSES

5.1 QUASI-STATIC PROBLEM OF SOIL CONSOLIDATION

The results for the present analysis and those obtained by Sandhu

(20) coincided as expected. Detailed results of the analyses were as re-

ported in reference (22) for the problem of one-dimensional consolida-

tion showed using Ghaboussi's 4-4 element.

5.2 DYNAMIC RESPONSE OF AN ELASTIC LAYER OF SINGLE MATERIAL

Figures 3(a) through 3(f) and Table 1(a) thru 1(c) illustrate the

U stress response of an elastic bar, fixed at one end and subjected to si-

nusoidal loading at the free end at time stages 0.012, 0.038, 0.05,

0.064, 0.088 and 0.10 seconds. The exact solution (9) for the problem

PJ [is, for applied load q(t) = q sin(40Tt),
0

a. Displacement:

u(y,t)= N [G(8n) G(9n+l)] (25)

n=O

b. Stress:

E
(y,t)= - [G'(6n) + G'(0n+1)] (26)

b Cb n=O

21
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Figure 3: Stress Distribution in an Elastic Layer
Subjected to Sinusoidal Load at Free
Surface. (b) Time=O.038 second.
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Figure 3: Stress Distribution in an Elastic Layer
Subjected to Sinusoidal Load at Free
Surface. (c) Time=O.05 second.
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Figure 3: Stress Distribution in an Elastic Layer
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Surface. (d) TimezO.064 second.
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TABLE 1

Stress Distribution in an Elastic Layer of Single Material Subjected to
Sinusoidal Load at Free Surface. (a) Time= 0.012 and 0.03 second

---------------------------.- -- -.-. -.-.------------------.

o/q 0

y/L t=0.012 sec t=0.03 sec EA

~------------------------- ---------------------------
FEM EXACT FEM EXACT""

0.01 ---- 0.2349xl10 -- 0.0 ---- 0.2033x10-26 ---- 0.0

0.11 0.6543xi0 "40 0.0 0.1104xlO "21  0.0

-------------------------------------------
0.21 0.1835xI10 0.0 0.4833xI1017  0.

0.31 0.4703x1: 0.0 0.1377xo-:T  0.0

-------------------- ----------------------- ---------------
0.41 0.107 x1O- 0.0 0.2132xl10 0.0

--------------------
0.51 0.2058xi0- 0.0 0.1297x0 :-- 0.0

------------ ---------------------------------------0.3 73601 '"-

0.61 0.3073x 0.0 0.1581xi0 1  0.0

0.71 0.3 x10 -8  0.0 0.7773 0.7795

0.81 0.1231x0 -3  0.0 0.8435 0.8344

0.91 0.3178 0.368 -0.2454 -0.2487

0.99 0.9915 0.9823 -0.9423 -0.9880

7-
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TABLE 1

Stress Distribution in an Elastic Layer of Single Material Subjected to
Sinusoidal Load at Free Surface. (b) Time= 0.05 and 0.064 second

cr/q0

y/L t=0.05 sec t=0.064 sec

FEM EXACT FEM EXACT

0.01 0.4820x10-18  0.0 0.3508x10-11 0.0

0.11 0.7783x10-14  0.0 0.1262x10-7  0.0

0.21 0.8188x10'10  0.0 0.2138x,0-4  0.0

0.31 0.397 x10-6  0.0 0.9445x10-2  0.0.

0.41 0.6025x10-3  0.0 0.4798 0.5878

0.51 0.1343 0.1253 0.9235 0.951

0.61 0.9983 0.9823 0.2535x10-1 0.0

0.71 0.4748 0.4828 -0.9523 -0.9510.

0.81 -0.6865 -0.6845 -0.5963 -0.5878

0.91 -0.911 -0.9048 0.5883 0.5878

-0.99 -1.3225 -1.2543 0.997 0.9980
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TABLE 1

Stress Distribution in an Elastic Layer of Single Material Subjected to
Sinusoidal Load at Free Surface. (c) Time= 0.088 and 0.1 second

yIL t=0.088 sec t=0.l sec

FEM EXACT FEM EXACT

0.01 0.4158x105  0.0 0.2271 0.1253

0.11 0.6543xI102  0.0 1.0198 0.9823

0.21 0.8933 0.9048 0.5223 0.4818

0.31 0.689 0.6845 -0.6545 -0.6845

0.41 -0.4473 -0.4818 -0.918 -0.9048

0.51 -0.9913 -0.9823 0.1033 0.1253

0.61 -0.1448 -0.1254 0.9768 0.9823

0.71 0.893 0.9048 0.4865 0.4818

0.81 0.6815 0.6845 -0.6838 -0.6845

0.91 -0.4747 -0.4818 -0.901 -0.9048

0.99 -0.994 -0.998 -0.1241 -0.1254
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where

G(t)= C b/E fq(t) dt 1-

n = t- (2nL+L-y)/Cb

n= t - (2nL-L+y)/Cb

dG
G'( ) : -d

G(9n ) = 0 where 9n< 0

C2 = E/P (wave velocity of bar)
b

The numerical solution was based on values of qo = -4, in addition to

those given in section 4.3. The investigation parameters , , 9 were

set equal to 0.25, 0.5, 1.0, respectively. These values satisfy Equation

(16). In Figures 3(a) through 3(f), we see good coincidence between the

finite element solution and the analytical solution throughout the spa-

tial as well as the temporal domains. At the point of y/L=0.99, the

percentage error at t=0.03 and 0.05 second was 4.6 and 5.4

,respectively. But at the other time stages it was less than 1.0%.

Figures 4(a) thru 4(c) and Table 2(a) thru 2(c) illustrates the dis-

placement, velocity and stresses along the elastic layer under unit step

load at the free surface, at time t = 0.08 sec, i.e. after 40 time in-

crements. The results were obtained for two different time integration

A -
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Figure 4: (a) Displacement Distribution in an Elastic
Layer under Unit Step Load at Free Surface
at Time=0.08 second. Influnece of choice.-
of Parameter.
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TABLE 2

(a) Displacement Distribution in an Elastic Layer under Unit Step Load

at Time=0.08 sec. Influence of Parameter ~

y/L j 0. 167 0=0.25 EXACT

0.1 0.4811x10- 21  4.3568x10-5  0.0

0.2 -0.1785xl10 5  6.051x10-4  0.0

0.3 0.008636 0.0091013 0.01

0.4 0.0194 0.001909 0.02

0.5 0.02858 0.02903 0.03

0.6 0.03945 0.03905 0.04

0.7 0.04854 0.04900 0.05

0.8 0.05948 0.05903 0.06

0.9 0.06852 0.06903 0.07

i 1.0 0.07949 0.07896 0.08
L~~~~~~~~~ ~ ~ ~ ~ ~ ---------------------------------
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TABLE 2

(b) Velocity Distribution in an Elastic Layer under Unit Step Load at
Time=0.08 sec. Influence of Parameter 3.

y/L )3=0.167 83=0.25 EXACT

0.1 0.7230xlo-18  2.3939x10: . 0.0

0.2 -0.2692 0.2368 0.0

0.3 1.011 1.2398 1.0

0.4 0.9885 1.1337 1.0

0.5 1.0119 0.8844 1.0

0.6 0.9878 1.0681 1.0
----------------------------------------------------------------

0.7 1.0125 1.0813 1.0
.-- -

0.8 0.9873 1.0582 1.0

0.9 1.0128 0.95322 1.0

1.0 0.9871 1.0168 1.0

L L --- L -- -

K.'..... .... .... .... .... ...
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TABLE 2

*(c) Stress Distribution in an Elastic Layer under Unit Step Load at
Time=0.08 sec. Influence of ParameterG1.

03=0.167 1=0. 25 EXACT

0.01 0.48 x10 3 2  0.1331xl104  0.0

0.11 -0.481 X10-16  0.4525x10-2  0.0

0.21 0.3333 0.3373 1.0

0.31 1.3673 1.1305 1.0

0.41 0.6023 1.0288 1.0
--------------------------------------------------

0.51 1.4245 0.937 1.0

0.61 0.553 0.9803 1.0

0.71 1.4648 1.0113 1.0

0.81 0.5225 0.9808 1.0

0.91 1.4853 1.0275 1.0

0.99 1.4873 0.9618 1.0
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schemes and compared with analytical solution (1,9). The first scheme

*used 9 =1.0, 0.5, Y = 0. 167, and the second 0 = 1.0, ~=0. 5, Y=

0.25. It is shown from Figure 4 Table 2(a) that both schemes give the

almost same displacement response with about 3 error against the exact

solution. However,13= 0.167 was better for velocity and ~=0.25 better

for stress distribution. Despite this fact, large error around wave

-front was still observed and numerical results were not reliable. The

oscillatory error may be overcome by increasing y and using the corre-

* sponding value ofj3from Equation (17) as we shall see in the next exam-

*ple. For this problem, one-dimensional linear element (called 1-1 ele-

ment) was used and CPU time on the AMDAHL 470/V8 Computer was 15.18

seconds for sinusoidal loading and 15.4 seconds for unit step loading, -

* respectively.

* 5.3 RESPONSE OF A FLUID-SATURATED SOIL LAYER (Garg's Problem)

In order to investigate the effect of fluid-soil interaction on wave

propagation, two different values of the permeability coefficient were

- selected to approximate "strong" and "weak" coupling extremes described

* by Garg (11). Figures 5(a) and 5(b) and Table 3(a) and 3(b) show the ye-

* locity for both the solid and the fluid at 10cm from the traction bound-

* ary. The numerical results are based on calculations with 9 1, =

* 0.6, Y= 0.3025. Reasonable agreement is seen between the finite element

* and the analytical solutions. But while the exact solution has the sharp

* discintinuity in the wave front, numerical was diffused. A single wave

* front exists. The wave is propagating with velocity =C., and the solid

* velocity is the same as the fluid velocity. This is because, for this -
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TABLE 3

Velocity History of Garg's Problem at 10cm from the Traction Boundary
for Strong Coupling.

Time Solid (cm/sec) Fluid (cm/sec)

(sec) FEM EXACT FEM EXACT

0.001 0.1479x10 7  0.0 -0.1479x10-7  0.0

0.01 0.1479x0 "3  0.0 -0.1479xlO -3  0.0

0.015 -0.7322xl1 0.0 -0.7322-1-0 0.0-----

0.02 -0.1861x10"2  0.0 -0.1861x10°2  0.0

0.025 .0.1888 0.0 -0.1888 0.0

0.026 0.4125 0.0 0.4125 0.0

0.027 0.6484 0.0 0.6484 0.0

0.028 0.7939 0.0 0.7939 0.0

0.030 0.8848 1.0 0.8848 1.0

0.035 1.0366 1.0 1.0366 1.0

0.040 1.0546 1.0 1.0546 1.0

0.045 1.0505 1.0 1.0505 1.0

0.050 1.0434 1.0 1.0434 1.0

- • -,

. . . . . . . . . . . . . ~ -.--. .
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problem, relative velocity w approaches zero and the two constituents

effectively act as a single continuum.

Figures 6(a) and 6(b) demonstrate the results of other extreme viz.

"weak" coupling. The values of G, Y, 1 were the same as for the "strong"

coupling. The results for a station 1U cm away from traction boundary (y -

= 40cm) are quite close to Garg's analytical solution (11). Existence

of two wave fronts travelling with speeds C_ and C.. is noticed.

Pore pressure distribution at lifferent times for the two extremes of

"strong" and "weak" coupling are plotted in Figure 7(a) and 7(b). A sin-

gle phase description is seen in Figure 7(a), in which the pressure waveI

is propagating with speed C,. Figure 7(b) clearly demonstrates the exis-

tence of two waves travelling with speed C_ and C+, in the fluid and the

solid, respectively. The above results were obtained by 1-1 element.

CPU time was 15.68 seconds for weak coupling analysis and 15.4 seconds

for strong coupling.

5.4 RESPONSE OF A FLUID-SATURATED SOIL LAYER (GHABOUSSI'S PROBLEM)

Figure 8 presents the response of a saturated layer to a unit step

loading. Solution of this problem was attempted by Ghaboussi and Wilson

(12). However, their results, were criticized by Garg (11), and do not

agree with the plot in Figure 8 (Table 5). In this figure, the non-di-

mensional pore pressure 7/qois plotted against y* = y/( KCo). For a = 1

and M -octhe pore pressure should be equal to the applied traction.

Ghaboussi and Wilson (12) reported figures which do not match Figure 8.

With 1-1 element, CPU time for the problem was 12.35 seconds.

- , " " . ,'-". ," . " - ' .- -' ,v " '. .. ". .' .T . . . *
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TABLE 4

Velocity History of Garg's Problem at 10cm from the 1raction Boundary
for Weak Coupling.

Time Solid (cm/sec) Fluid (cm/sec)

(sec) FEM EXACT FEM EXACT

0.0024 -0.2009x 1 0 0.0 -0.5264x10-7  0.0

0.0096 0.184410 0.0 -0.llS0xlO 0.0

0.0192 0.4323x10 2  0.0 0.1890xl0 2  0.0

0.0312 0.9575x10-2  1.0 0.4078 0.5

0.0408 1.0527 1.0 0.4428 0.5

0.0504 1.0760 1.0 0.4834 0.5

0.060 1.0856 1.0 0.4880 0.5

0.696 1.0807 1.0 0.4720 0.5

0.0792 1.0632 1.0 0.8662 1.0

0.0912 1.0577 1.0 1.0260 1.0

0.1008 1.0568 1.0 1.0475 1.0

0.1104 1.0560 1.0 1.0555 1.0

0.120 1.0562 1.0 1.0549 1.0
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* TABLES5

Pore Pressure (n'/q') Distribution of Garg's Problem
0

yIL Strong Coupling Weak Coupling
(t=0.05 milli sec) (t=0.12 milli sec)

0.01 -0.1332x1 0" 0.5204x10 2

0.11 -0.1296x10-11  0.8856x101

0.21 -0.9494x10- 0.2026

0.31 -0.1544x10 6  0.2031

0.41 -0.3558x104  0.2027

------------- --------- 2-------- ---------------------------

0.71 -0.2345xl 0.2077

0.81 0.235 0.2928

0.91 0.2344 0.2928

0.99 0.2347 0.2928

---- ---- --- ---- ---- -- ---- ---- --- ---- ---
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TABLE 6

Pore Pressure Distribution (7r/q of Ghaboussi's Problem at Time=0.111,

0.015 and 10.028 milli second

y/L t=0.111 t=0.015 t=0.028

0.01 2.3xO2.428x106  0.6653

0.11 2.651xl10 20  4.328x10-5  0.8208

0.21 4.108xl0 1  8.997xl104  0.9243 -

0.31 6.364x10 1  1.33 x10 2  0.9648

0.41 9.861x10-14  1.217x10-1  0.9706

0.51----------------------.7x1 ~ 092
0.61 --------------------------------

0.71 3.567x107  5.473x101  0.9733

0.81 5.6x1 0 9.176xl10 0.9729

0.91 8.712xl0----9.678x10' 0.9771

0.99 0.4728 3.123x10' 0.2330

---------------------------------- 
--------

-- -- --- - -- - -- - -- -- - -- - -- - -- - -----.. . . . . . . . ..--



SECTION VI

CONCLUSIONS

Galerkin finite element method was used along with the -Y-9 algor-

ithm to set up numerical scheme for investigating wave propagation

through saturated porous media. Several problems with known analytical

solutions were analyzed. Results of the analyses indicate the following:

1. The integration parameters ~,yand Q should be carefully selected

to avoid oscillatory error.

2. The scheme, with proper selection of ~,y and 0, showed exellent

agreement with the analytical solutions.

ri 3. The numerical and analytical results show the importance of the

role of permeability in single or double phase description for fluid-

saturated porous media. For low permeability, there is little relative

motion and the strong coupling on single material description would be.-

valid. For high permeability, the two phase description is necessary.

4. The computer code was checked only for one-dimensional problems.

Its effectivenes for two-dimensional (plane strain) problems is yet to

be established.

5. Further investigation in the choice of damping matrices is re-

quired. The solution process for a few idealized problems has been

checked, but the assumptions regarding various couplings may not repre-

sent actual soil behavior.

51

o. -.x

...........................................................................'* .. _o.*



52

6. The computer code implemented Ghaboussi and Wilson's version of

Biot's theory. The entire fluid mass is expected to be in relative mo-

tion. In other theories, an interaction mass is introduced. This would

imply a "partial" coupling somewhere between the "strong" and "weak"

coupling defined by Garg (11). Work is needed to quantify the coupling

and to allow for this in the computer code by suitably defining mass ma-

trices.

7. The computer code needs to be extended to propagation of shear

waves and Love and Rayleigh waves. Studies are needed to allow for re-

flection and refraction of waves at interfaces or boundaries. Dynamics

of nonhomogeneous, anisotropic and nonlinear soils needs to be investi-

gated.
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Appendix A

SPATIAL DISCRETIZATION

In this appendix, we present the spatial discretization of the equa-

tion of wave propagation through saturated porous media using Galerkin's

method.

A.1 WEAK FORMULATION

A weak form for Equation (1) is;

iljkluk,lj +oM ~ k,k wk,k),j +Pf..,

- 2 i ~ 0 (A-1)

where op M is a test function. Equation (A-i) can be rewritten as

IEjklukli#),j -i Ejkluk,l + (a2M 8iu3k

a2M M + M a-0M juk,k V',j + a 8 ijwk,k OM),j a &jwk,k ,j

+(Pf. u -v 0 (A-2)
1 1 T~fP2 Wi)~)d

Using Gauss theorem on the first, the third and the fifth terms,
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f1E ijk lUk,l + a2 M 6ijUkk + ' M aijWk k Mnj dS + fpfiMdv

S v

iE , M 2 M M + GM a M
PJCijkluk,l V'r+ a ijukk &j ijwk,k j

V

+ (P i + 1 P2i) dv (A-3)
1 +~ 7t 3d

where ni are the components of the outward unit normal to S. The total
'

stress tensor is defined as (4)

.j = EjklUk,l + a2 M 8 ijuk,k+ M 8ij iwk,k (A-4)

Hence, Equation (A-3) can be rewritten as

fvijnj dS+ f 41 M dv
S V

f [rE ~ ,+ a2 M8 Uo8.

ij~ kluk,l ,j ijuk,k V,j ij'k,k j
V

117

(plu. + T pWi) t#M] dv (A-5)

f 2

From the boundary conditions, Equations (3) and (4), we have

.I-

4M
S 0 on Sli (A-6)

Substituting Equations (A-6) and (A-7) into Equation (A-5),

o. .'-'. . ..,.., -.. .-. ,,, ; ..,-'.. -'. , . .,....... . . . . .. . .. . . .- ... . ,".. ,. . . . . ... -... ..-. . -.
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4 J[lM ,s .f f U d,= j kluk,1 ,M (° 2M uk M_
2i v v

+ ijWkk M + (PUi + L 2 G.) p2 M] dv (A-8)

Similarly, a weak form for Equation (2) is

S1 . dv (A-9)

,LM(a Uk,k + wk,k),i + 2fi- P2ui - C.jwj v ('
v ,

where M is a test function. Equation (A-9) can be rewritten as

[(M( k W )M - M( Ukk + wk,k) OMi
V

1MTP2 f - 10~...~ dv 0 (A-10)

Noting that the pore pressure is given by (3) as

S7r= M(a ui  + wii) (A-i)

and using Gauss theorem on the first term, Equation (A-10) can be

written as

f. n O dS f }"2fi O dv
SS v

= [M(a uk,k + Wk,k) 'M. + (_IP26i + i + Cij j) I M  dv (A-12)

vf3

h where ni are components of the outward unit normal to S. Equations (5)

and (6) for 7r= 0 are

27.9:i



58

=0 on S4  (A-13)

A

7rn A =n on S (A-14)

3 ,l 3

Hence, Equation (A-12) may be written as

J ;n.0M dS +f 1 2fi OM dv
° 3 v ,

1 jf 2

I'[MIau~ + W 1 *d + P'2- + *C. )0M dv (A-15)

V

A.2 GALERKIN APPROXIMATION
4

For a typical element, the local solid and relative fluid displace-

ments are approximated by

= O N (x) (A-16)

W. ON(x) ui  A-7

N Nw= 0N(x) wi iAi

where 4N and 4b are interpolating functions defined over the finite
N N-

element and u, wi  are the values of solid and fluid displacements at

the node N.

Substituting from Equation (A-16), (A-17) into Equation (A-8) gives . -

4

St i O dS + fPfj dv
Is v
21

v ,.

.................................... ............ ... E O . : . .. + a 2 M ..
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N N M +(,N *+1 N+,k Wk MM i P2 -0 ' M] dv (A-18)

Define

f ti OM dS + fi k dv = FM

2i v

M 2 M N NMCElk 1 a M .. /'.&]dv =KSk~ijkl ,l 00 b + iM ij ,k ssik
V

fJ M Bij ,k Okj dv = k (A-i9)

V

fP O'M dv NM
sS

f LP2 ONO~ dv =MNM

jf 2sf

Substituting Equation (A-19) into (A-18),

KNM ~N +NM N NM.N N NM

ssik k Ksfik wk + Mss ui + Msf I - (A-20)

Similarly, substituting from Equation (A-16),(A-17) into Equation (A-15)

f M4P n dS +f 1 Pf iM dv
'T T

-fMc a NkM u +fM. NkMl w +fLp2 VINNM dv
V V v

+ f 1 N-NN d
NM dv +fC (A-21)

v If 2 w M

Define

-*-,'
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f nj M dS +f T 2fJM dv =F

3 V

N M d KNMf Ma ON, k Mj d= sfkj

V

fM 0~. N4, K NM

f 2 N NMk N M dv ffkj (A-22)

f l p N 0M dv MNM
V

I N M NM
2 p2 O dv C MNf

fCjk dv : ffjk

v

Substituting Equation (A-22) into Equation (A-21)

FM NM N NM N NM -N NM..N +NM .N

fj Ksfkj uk + Kffkj wk + Msf Uj + Mff wj + Cffjk k (A-23)

Equations (A-20) and (A-23) can be written in matrix form as

Kss Ksf 0 ss Msf Fs ""C

+ + (A-24)

K K J 0 C M M f

t,. f."

S . km

. . . . _ .... _ . . . . . . .. S- : * : .... *
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